

Technical Note

Subject: Optical Fiber Extender Reach Calculations

Product Name: Products with Optical Fiber Modules

Technical Note Date: August 25, 2021

Using the OSP SFP+ Module

By default, OSP SFP+ is already inserted into all Kramer optical products.

Kramer offers both duplex and simplex transceiver modules as specified below.

Duplex (dual-fiber strand) modules:

- OSP-MM1: Optical MM 850nm 10G SFP+ Transceiver (usually included in the package).
- OSP-SM10: Optical SM 1310nm 10G SFP+ Transceiver (can be purchased separately).

Simplex (single-fiber strand) module:

• **OSP-SM10S**: Optical SFP+ Transceiver Pair over 10G 1270/1330nm Simplex SM Fiber (can be purchased separately).

Replacing the OSP SFP+ Modules

Before deciding to replace the default SFP+ transceiver, consider the infra-structure of the installation area, the desired distance, optical loss budget and typical expected loss.

When replacing the optical transceivers, use compatible SFP+ optical **transceiver modules on both** extender paired end-point units.

Notes on Connecting the OSP SFP+ Modules

OSP-MM1 and **OSP-SM10** modules are designed to be used only with LC(UPC) **blue** or LC(PC) **white** connectors. Using an LC(APC) **green** connector with the module causes poor performance and can damage the module connector.

For all other cable connections that do not connect directly to the **OSP-MM1** or **OSP-SM10** modules, such as the optical patch panel and bulk cables illustrated **below**, we recommend using Angled Physical Contact (APC) **green** connectors for improved end-to-end reach performance.

When using OSP modules consider the following:

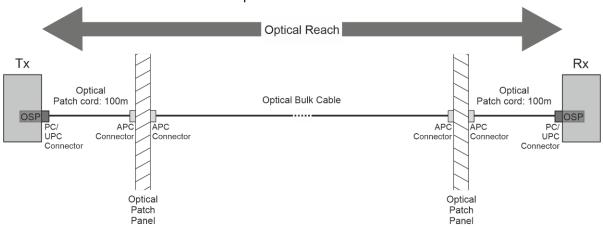
- Modules are Class 1 Laser products.
- There may be Invisible laser radiation present.
- · Avoid long-term viewing of laser.
- Avoid the use of magnifying viewing aids or instruments (such as binoculars, telescopes, microscopes and magnifying lenses, but not spectacles or contact lenses).
- Avoid placing optical devices in the emitted beam that could cause the concentration of the laser radiation to be increased.

KRAMER ELECTRONICS, Ltd.

E-mail: info@kramerav.com
Web: www.kramerav.com

Technical Note

Optical Reach Evaluation


The following table defines various typical Fiber cable characteristics, used for optical reach evaluation:

Cable Category	Core Diameter [µm]	Wavelength	Fiber Loss [dB/km]	Connector Loss [dB]	Splice Loss [dB]
MM OM1 [G.651.1]	62.5/125	850nm	3	Typical: 0.3 Max.: 0.75	0.3
MM OM2 [G.651.1]	50/125				
MM OM3 [G.651.1, Laser Optimized]			2.5		
MM OM4 [G.651.1, Laser Optimized]					
MM OM5					
SM OS1 [G.652A/B]	8	1310nm	1		
SM OS2 [G.652C/D]			0.4		

The following examples show how to calculate dB loss during optical signal transmission over fiber optical infrastructure.

In this optical system layout example:

- Both Optical Product transmitter and receiver are connected to a patch panel via 100m patch cords.
- There are 6 connectors and no splices.

System Layout Example for Optical Reach Evaluation

For multi-mode lines (MM OM3 cable category, as defined in the table above):

- Maximum loss budget is: 8.6dB.
- Typical loss per connector is 0.3dB.
- Typical loss for each patch cord (100m) is 0.25dB.
- Fiber-optic loss is 2.5 dB/km.

KRAMER ELECTRONICS, Ltd.

E-mail: info@kramerav.com
Web: www.kramerav.com

Technical Note

Multi-mode bulk line budget is: 8.6 - (0.3x6 + 0.25x2) = 6.3dB. Evaluated bulk line length is: 6.3/2.5 = 2.5km.

For single-mode lines (SM OS1 cable category, as defined in the table above):

- Maximum loss budget is: 11.9dB.
- Typical loss per connector is 0.3dB.
- Typical loss for each patch cord (100m) is 0.1dB.
 - Fiber-optic loss is 1 dB/km.

Single-mode bulk line loss budget is: 11.9 - (0.3x6 + 0.1x2) = 9.9dB. Evaluated bulk line length is: 9.9/1 = -9.9km.

KRAMER ELECTRONICS, Ltd.

E-mail: info@kramerav.com
Web: www.kramerav.com