<table>
<thead>
<tr>
<th>Item</th>
<th>HC 0.9</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixel Pitch</td>
<td>0.9375</td>
<td>mm</td>
</tr>
<tr>
<td>Brightness</td>
<td>600</td>
<td>nit</td>
</tr>
<tr>
<td>Refresh Rate</td>
<td>1920</td>
<td>Hz</td>
</tr>
<tr>
<td>Power Consumption (Max./Avg.)</td>
<td>720/240</td>
<td>W/sq.m</td>
</tr>
<tr>
<td>Viewing Angle (H/V)</td>
<td>160/125</td>
<td>deg.</td>
</tr>
<tr>
<td>Panel Parameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel Dimensions</td>
<td>600x337.5x50</td>
<td>mm</td>
</tr>
<tr>
<td>Module Dimensions</td>
<td>150x168.75</td>
<td>mm</td>
</tr>
<tr>
<td>Panel Weight</td>
<td>7.7/8.2</td>
<td>kg</td>
</tr>
<tr>
<td>Panel Material</td>
<td>Aluminum</td>
<td>--</td>
</tr>
<tr>
<td>Module Maintenance</td>
<td>Front</td>
<td>--</td>
</tr>
<tr>
<td>PSU Maintenance</td>
<td>Front/Rear</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-10 ~ +40 °C</td>
<td></td>
</tr>
<tr>
<td>Operating Humidity</td>
<td>10%~80%</td>
<td>RH</td>
</tr>
</tbody>
</table>
HC series

Brightness
LED displays boast higher level of brightness than LCD displays, largely immune to ambient light. LCD displays deliver weaker visual performance in high ambient light.

Gray Scale
LED displays boast higher level of gray scale than LCD displays. Compared with LCD displays, LED displays present more vivid images with more details and richer colors.

Ability to create seamless large-format display
LED displays are seamless. The gap between LCD displays is over 3.5mm.

600*337.5*50mm Panel dimensions 8+kg Panel weight Die casting aluminum Panel material
4 in 1 Pixel Integration
Fine pixel display with better front maintenance

IMD 4-in-1 technology

- IMD Integrated Packaging
 4 in 1 pixel integration
- Strong Mounted Strength
 Improve strength and reduce the probability of knocking out LED
- Convenient Maintenance
 PCB pad is large enough and fewer numbers for easy maintenance
Common Cathode Technology, Higher Brightness in Less Power Consumption

Traditional Common Anode

Common Cathode Technology

Common cathode technology increases brightness by 20% while reducing energy consumption by 20% with higher contrast ratio and better heat dissipation.

- RGB separate power supply
- No external resistance
- High precision voltage control
- Low heat dissipation
- Lower power consumption
- Higher LED lifespan and uniformity
- Lower color shift at low brightness
- Lower pixel and circuit failure

Traditional Common Anode
CrystalView Technology

CrystalView technology improves visual performance in the shadows with richer details, deeper DOF and increased sharpness. Thanks to this technology, seven major problems of LED displays like crossed dead pixels, lack of uniformity in low gray scale, line scan issues, color shift, dark lines, high-contrast interference and ghosting effect can be solved.

High gray scale at low brightness levels

LED displays boast higher gray scale than LCD displays to deliver more vivid images with richer color. This is because LED displays can enrich the color layering to enhance the details. CrystalView technology with SRAM can save data bandwidth and reach high gray scale in low data frequency.

Traditionally, even on LED displays the decrease in brightness is paralleled by a decrease in the grayscale. The HC series uses a premium chip with PWM which can maintain every detail, allow a natural and smooth color gradient and achieve high greyscale even at low brightness levels.

As variation of grey occurs on an image, tradition chips struggle to create a smooth transition between color variation. The chip in HC series processes this variation smoothly so the shift in color is lifelike and without visual stutter.

Ultra-High Refresh Rate

CrystalView uses Scrambled-PWM (S-PWM) to enhance the modulation on the pulse width and splits the turn-on time into several shorter ones, thus increasing the visual refresh rate. In addition, the GCLK frequency multiplication technology effectively improves the GCLK frequency to double its visual refresh rate.
Sharper images

Image sharpening also enhances the contrast of the gray scale to make blurred images clearer. It can also help decrease the ghosting effect that can happen on text. Ghosting effect on text refers to blurry letter edges. The HC series can use its sharpening to improve details at the edge of objects so that the edges, outlines and image details are all clear.

Enhanced colors

By handling the white balance and color cast, the tint of the entire image conforms to the original color, so that the image can loyally display the material color to improve visual effects and image definition. On the other side, if colors in the area with low brightness are affected by the area with high brightness, HC series can take countermeasures to eliminate the high-contrast interference.

When dead pixels do occur, HC series can weaken the area crossing the dead pixel to reduce the defect on a displayed image until that module can be replaced.
Extended Viewing Angle

HC series have a wide viewing angle of 160°. Images are clear and even when viewing images from even extreme side angles or from above or below the screen. Get the message on the screen out to the widest audience possible and make sure that they are seeing the content as intended without traditional LCD angle fade, color lumps or mosaics.

Simple and easy maintenance

Modular design makes maintenance efficient and easy.

Quick plug for easy maintenance
Power & Data Redundancy

Dual Power: Two power boxes can be installed in each panel and work together with shared current. When one of the power boxes fails, the other ensures normal and stable operations.

Dual Receiving Cards: Two receiving cards can be installed with two input and two output interfaces on the panel for signal backup. When one receiving card is faulty, the other one starts to work to ensure uninterrupted signals.

In addition, the entire data loop can be connected to controllers on both sides (since data runs both ways). When transmission fails in channel A, the backup signal channel B automatically switches to transmission from the last panel for loop backup of signals.

Applications